Supplementary Materials and Methods

1. Cell culture and RNA isolation

NT2 cell line was purchased from STRATAGENE (CA, USA) [9] and was cultured according to the recommendations of the supplier. The stock solution (10 mM) of RA (SIGMA, MO, USA) was prepared in dimethyl sulfoxide. On day 0, the culture medium was replaced with fresh medium containing 10 uM RA. After 24h, 48h, 7day, 14day and 35day incubation with RA, we collected the cells for RNA isolation and designated them as 1-day, 2-day, 7-day, 14-day and 35-day samples, respectively. Medium containing 10 uM RA was replaced every 2-3 days. The 0-day sample (cells immediately before the addition of RA) was used as the control. Total RNAs were extracted from these cells using the ISOGEN Reagent (Nippongene, Tokyo, Japan). Subsequently, polyA(+) RNAs were isolated from each total RNA sample using a MicroPoly(A) Purist Kit (Life Technologies, CA, USA).

2. Microarray analysis

Synthetic polynucleotides (80-mers), representing 31,917 human transcripts, (MicroDiagnostic, Tokyo, Japan) were arrayed by using a custom arrayer. Microarray analyses were performed as previously described [8, M1]. All the data in accordance with the MIAME guideline were deposited at DDBJ via CIBEX database (http://cibex.nig.ac.jp/index.jsp) in Accession Numbers CBX132. To identify genes demonstrating significant changes in expression, t-test was performed between the 0-day sample (negative control) and each RA time point sample (P < 0.01). Among the extracted genes, we further selected those genes that exhibited differences greater than 1.0 between the mean averages of log ratios for the two sample groups.

3. Analysis of splicing patterns of cDNAs

The splicing patterns of genes were analyzed by using the information available in the FLJ Human cDNA Database ver. 3.0, http://flj.lifesciencedb.jp, as described previously [10]. For analyzing the N-terminus splicing patterns, we only used our FLJ ESTs constructed by an optimized oligo-capping method, 90% or more of which contained the transcription start site (TSS) [10, 11]. In our analysis, we only focused on the protein-coding transcripts, and ignored a lot of non-coding RNAs and mRNAs in which AS occurred only in the untranslated region [M2].

4. Quantitative real-time PCR analysis

Synthesis of template cDNA, performance of real-time PCR and design of primers were

performed as previously described [8, 10]. The expression values of individual genes were calculated by comparing their Ct values to that of the control using the RQ software (Life Technologies). And the expression levels of genes were normalized with respect to that of the human glyceraldehyde-3phosphate dehydrogenase (GAPDH) and were represented in log2 base. Samples were run in triplicates and the data shown are average of three experiments.

Supplementary References

[M1] Miura, A. et al. (2006). Differential responses of normal human coronary artery endothelial cells against multiple cytokines comparatively assessed by gene expression profiles. *FEBS Lett.*, *580*, 6871-6879.

[M2] Tollervey, D. (2006). Molecular biology: RNA lost in translation. Nature, 440, 425-426.

[S1] Mahnke-Zizelman, D.K. & Sabina, R.L. (2002). N-terminal sequence and distal histidine residues are responsible for pH-regulated cytoplasmic membrane binding of human AMP deaminase isoform E. *J. Biol. Chem.*, 277, 42654-42662.

[S2] Barnes, K.C. et al. (2006). Polymorphisms in the novel gene acyloxyacyl hydroxylase (AOAH) are associated with asthma and associated phenotypes. *J. Allergy Clin. Immunol.*, *118*, 70-77.

[S3] Chen, Y. & Tang, B.L. (2006). The amyloid precursor protein and postnatal neurogenesis/neuroregeneration. *Biochem. Biophys. Res. Commun.*, *341*, 1-5.

[S4] Maloney, B. et al. (2004). Presence of a "CAGA box" in the APP gene unique to amyloid plaque-forming species and absent in all APLP-1/2 genes: implications in Alzheimer's disease. *FASEB J.*, *18*, 1288-1290.

[S5] Mowrer, K.R. & Wolfe, M.S. (2008). Promotion of BACE1 mRNA alternative splicing reduces amyloid beta-peptide production. *J. Biol. Chem.*, *283*, 18694-18701.

[S6] Tanahashi, H. & Tabira, T. (2007). A novel beta-site amyloid precursor protein cleaving enzyme (BACE) isoform regulated by nonsense-mediated mRNA decay and proteasome-dependent degradation. *Neurosci. Lett.*, *428*, 103-108.

[S7] Bros, M. et al. (2011). Differential gene expression analysis identifies murine Cacnb3 as strongly upregulated in distinct dendritic cell populations upon stimulation. *Gene*, 472, 18-27.

[S8] Vendel, A.C. et al. (2006). Alternative splicing of the voltage-gated Ca2+ channel beta4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. *J. Neurosci.*, *26*, 2635-2644.

[S9] Philibert, R.A. et al. (2009). Examination of the nicotine dependence (NICSNP) consortium findings in the Iowa adoption studies population. *Nicotine Tob. Res.*, *11*, 286-292.

[S10] Hood, F.E. & Royle, S.J. (2009). Functional equivalence of the clathrin heavy chains CHC17 and CHC22 in endocytosis and mitosis. *J. Cell. Sci.*, *122*, 2185-2190.

[S11] Maeda, Y. et al. (2008). CUL2 is required for the activity of hypoxia-inducible factor and vasculogenesis. *J. Biol. Chem.*, *283*, 16084-16092.

[S12] Sartori da Silva, M.A. et al. (2010). Essential role for the d-Asb11 cul5 Box domain for proper notch signaling and neural cell fate decisions in vivo. *PLoS One, 5*, e14023.

[S13] Manneville, J.B. et al. (2010). Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. *J. Cell Biol.*, *191*, 585-598.

[S14] Eichenmuller, B. et al. (2002). The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. *J. Biol. Chem.*, 277, 1301-1309.

[S15] Laramie, J.M. et al. (2008). Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; the NHLBI Family Heart Study. *BMC Med. Genet.*, *9*, 46.

[S16] Greene, J.M. et al. (1998). Identification and characterization of a novel member of the fibroblast growth factor family. *Eur. J. Neurosci.*, *10*, 1911-1925.

[S17] Wang, C. et al. (2011). Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage gated sodium channels. *J. Biol. Chem.*, .

[S18] Reinke, S.O. et al. (2009). Biochemical characterization of human and murine isoforms of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). *Glycoconj. J.*, *26*, 415-422.

[S19] Zhang, C.L. et al. (2002). Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. *Mol. Cell. Biol.*, *22*, 7302-7312.

[S20] Chen, B. & Cepko, C.L. (2009). HDAC4 regulates neuronal survival in normal and diseased retinas. *Science*, *323*, 256-259.

[S21] Kresse, S.H. et al. (2009). LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. *Genes Chromosomes Cancer*, *48*, 679-693.

[S22] Yen, C.C. et al. (2009). Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. *Int. J. Oncol.*, *35*, 775-788.

[S23] Huang, X. et al. (2010). Mutational analysis of NHAoc/NHA2 in Saccharomyces cerevisiae. *Biochim. Biophys. Acta, 1800,* 1241-1247.

[S24] Ha, J.S. et al. (2010). Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. *Exp. Cell Res.*, *316*, 1651-1661.

[S25] Hou, S.W. et al. (2010). PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. *Cancer Res.*, *70*, 2901-2910.

[S26] Menigatti, M. et al. (2009). The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. *Mol. Cancer.*, *8*, 124.

[S27] Hendriks, W.J. et al. (2009). PTPRR protein tyrosine phosphatase isoforms and locomotion of vesicles and mice. *Cerebellum*, *8*, 80-88.

[S28] Dupe, V. & Pellerin, I. (2009). Retinoic acid receptors exhibit cell-autonomous functions in cranial neural crest cells. *Dev. Dyn.*, 238, 2701-2711.

[S29] Tran, P.X. et al. (2011). Association of retinoic acid receptor genes with meningomyelocele. *Birth Defects Res. A. Clin. Mol. Teratol.*, *91*, 39-43.

[S30] Sun, L. et al. (2003). Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus. *J. Biol. Chem.*, 278, 38301-38309.

[S31] Dossena, S. et al. (2005). The expression of wild-type pendrin (SLC26A4) in human embryonic kidney (HEK 293 Phoenix) cells leads to the activation of cationic currents. *Eur. J. Endocrinol.*, *153*, 693-699.

[S32] Bodoy, S. et al. (2005). Identification of LAT4, a novel amino acid transporter with system L activity. *J. Biol. Chem.*, *280*, 12002-12011.

[S33] Banerjee, S.K. et al. (2009). SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. *Cardiovasc. Res.*, *84*, 111-118.

[S34] Briski, K.P. & Marshall, E.S. (2001). Induction of ependymal, glial, and neuronal transactivation by intraventricular administration of the SGLT1 Na+-D-glucose cotransporter inhibitor phlorizin. *Neurochem. Res.*, *26*, 783-792.

Supplementary Table 2. Quantitative analysis of expression of 58 RA-responsive genes by real-time PCR.

Relative expression to 0-day sample (Log2RQ) $\,$

_			0-day Log2RQ	1-day Log2RQ	2-day Log2RQ	7-day Log2RQ	14-day Log2RQ	35-day Log2RQ
Gene symbol	cDNA name	Primer set Name	mean \pm S.D.	mean \pm S.D.	$mean \pm S.D.$	$\frac{\text{mean} \pm \text{S.D.}}{5.2 \pm 0.2}$	$mean \pm S.D.$	$mean \pm S.D.$
DCLKI DCLK1	FLJ50539	018_01	0.0 ± 1.0	-0.2 ± 0.4	-1.0 ± 0.6	-5.2 ± 0.3	-6.0 ± 0.1	-3.5 ± 0.5
DULKI ETV1	NM_0049563	018_02 NT-PS_01_01	0.0 ± 0.3	-0.3 ± 0.0	0.0 ± 0.0	2.3 ± 0.1	3.3 ± 0.0 17 ± 0.8	0.2 ± 0.4
ETV1	FLJ50494	NT-PS 01 02	0.0 ± 0.3 0.0 + 0.1	-0.1 ± 0.4 0.3 ± 0.1	-0.7 ± 0.6	-0.5 ± 0.3 -1.4 ± 0.2	3.0 ± 0.8	$\frac{2.7 \pm 0.0}{4.0 \pm 0.4}$
ETV4	NM_001986.1	NT-PS_02_01	0.0 ± 0.2	-0.4 ± 0.1	-1.0 ± 0.4	-5.8 ± 0.2	-5.9 ± 0.5	-4.0 ± 0.6
ETV4	BC007242.1	NT-PS_02_03	0.0 ± 0.0	-1.0 ± 0.4	-2.6 ± 0.4	-4.6 ± 0.2	-2.0 ± 0.8	-0.9 ± 0.5
ETV5	NM_004454.1	NT-PS_03_01	0.0 ± 0.5	-2.4 ± 0.6	-3.9 ± 1.2	-3.2 ± 1.0	-2.0 ± 0.8	-0.6 ± 0.5
ETV5	FLJ56169	NT-PS_03_02	0.0 ± 0.1	-0.2 ± 0.2	-1.4 ± 0.7	-1.5 ± 0.3	-0.2 ± 0.5	1.8 ± 0.7
GPRC5B CPRC5P	NM_016235.1	BT_0078_01	0.0 ± 0.0	0.6 ± 0.1	-0.3 ± 0.4	0.0 ± 0.1	-1.6 ± 0.2	0.8 ± 0.4
HOXA3	NM 030661 3	$N_42 020 01$	0.0 ± 0.1	-0.0 ± 0.3	-1.0 ± 0.3 10.9 ± 0.4	-0.8 ± 0.4	-2.1 ± 0.2	0.9 ± 0.2 17.7 ± 0.0
HOXA3	NM 153632.1	TC11 N-A2 020 06	0.0 ± 0.3 0.0 ± 0.1	-0.1 ± 0.5	10.9 ± 0.4 1.8 ± 0.4	6.1 ± 0.3	10.7 ± 0.5 6.5 ± 0.5	7.6 ± 0.6
MEIS2	NM_020149.2	N-A3_016_01	0.0 ± 0.7	3.4 ± 0.7	3.8 ± 0.3	6.1 ± 0.1	4.3 ± 0.2	6.3 ± 0.5
MEIS2	NM_002399.2	N-A3_016_02	0.0 ± 0.4	2.2 ± 0.4	2.1 ± 0.1	4.0 ± 0.1	2.6 ± 0.3	4.4 ± 0.3
MEIS2	NM_172316.1	N-A3_016_03	0.0 ± 1.1	2.6 ± 0.6	2.6 ± 0.3	4.8 ± 0.1	3.6 ± 0.4	5.6 ± 0.2
NEFM	FLJ58361	E7	0.0 ± 0.1	-0.3 ± 0.4	0.2 ± 0.2	2.8 ± 0.3	1.0 ± 0.3	3.9 ± 1.4
NEFM DAX6	NM_005382.1	E10 NT PS 05 01	0.0 ± 0.0	1.0 ± 0.3 1.7 ± 1.8	1.0 ± 0.1	5.1 ± 0.3 8.2 ± 0.2	3.3 ± 0.1	4.3 ± 1.5 75 ± 10
PAX6	FLJ36930	NT-PS 05 03	0.0 ± 1.3 0.0 + 1.4	1.7 ± 1.8 1.7 ± 1.5	4.9 ± 0.4 50 + 0.6	8.2 ± 0.2 8.4 ± 0.3	7.0 ± 1.2 87 + 05	7.5 ± 1.0 8.6 ± 0.3
PDZRN3	FLJ55043	023_01	0.0 ± 0.0	2.2 ± 1.7	7.4 ± 0.8	11.7 ± 0.2	9.0 ± 0.7	10.2 ± 0.7
PDZRN3	FLJ54746	023_02	0.0 ± 0.3	0.9 ± 0.8	4.0 ± 0.2	6.3 ± 0.1	5.6 ± 0.5	4.9 ± 0.1
PDZRN3	FLJ54738	023_03	0.0 ± 0.7	-0.1 ± 0.2	1.3 ± 0.7	7.0 ± 0.0	6.0 ± 0.1	4.1 ± 1.0
PDZRN3	FLJ97766	023_04	0.0 ± 0.0	0.4 ± 0.6	1.9 ± 0.7	4.7 ± 0.0	3.9 ± 0.0	3.0 ± 0.7
PDZRN3	NM_015009.1	023_05 TC04_NT_PS_04_06	0.0 ± 0.1	-0.3 ± 0.7	1.3 ± 0.3	3.7 ± 0.2	2.7 ± 0.1	1.7 ± 0.2
POUSF1 POUSF1	NM_002701.5	NT-PS_04_02	0.0 ± 0.3	0.1 ± 0.2	-0.3 ± 0.3	-6.2 ± 0.1	-6.3 ± 0.1	-5.8 ± 0.0
RARB	NM_2009209.5	TC13 01	0.0 ± 0.5 0.0 ± 0.5	6.1 ± 0.2	4.0 ± 0.0 8.0 ± 0.0	7.6 ± 0.2	7.5 ± 0.3	$\frac{5.2 \pm 0.1}{8.9 \pm 0.0}$
RARB	FLJ56241	TC13_02	0.0 ± 0.1	1.7 ± 0.3	3.2 ± 0.3	3.4 ± 0.5	3.7 ± 0.2	5.9 ± 0.0
SEMA3C	FLJ55486	C8	0.0 ± 1.4	-0.8 ± 1.7	0.3 ± 0.4	4.6 ± 0.5	2.6 ± 0.1	5.2 ± 0.6
SEMA3C	NM_006379.2	C9	0.0 ± 0.6	1.6 ± 0.5	2.2 ± 0.4	7.3 ± 0.5	4.8 ± 0.6	7.3 ± 0.2
SKAP2	FLJ50630	N-A3_026_01/067_01	0.0 ± 0.2	9.1 ± 0.1	11.4 ± 0.3	11.1 ± 0.0	14.4 ± 0.2	15.3 ± 0.6
SKAP2 SKAP2	FLJ51950 NM 003930 3	N-A3_026_02/067_02	0.0 ± 0.3	9.0 ± 0.0 67 ± 0.4	10.3 ± 0.6 7.6 ± 0.4	12.2 ± 0.3 10.2 ± 0.5	8.2 ± 1.0 12.4 ± 0.2	11.8 ± 1.2 13.9 ± 0.8
TGIF1	NM_003244.2	N-A3_014_01	0.0 ± 1.0 0.0 + 0.4	-1.3 ± 0.1	-1.9 ± 0.4	-0.5 ± 0.0	-2.2 ± 0.8	-1.9 ± 0.3
TGIF1	NM_173207.1	N-A3_014_02	0.0 ± 0.2	-0.5 ± 0.4	-0.1 ± 0.2	1.6 ± 0.1	-0.7 ± 0.1	-1.1 ± 0.8
TGIF1	NM_170695.2	N-A3_014_03	0.0 ± 0.0	-1.3 ± 0.1	-0.9 ± 0.1	-0.2 ± 0.2	-1.9 ± 1.1	-2.2 ± 0.4
TXNIP	NM_006472.1	A1	0.0 ± 0.2	0.8 ± 0.3	2.7 ± 0.6	7.2 ± 0.0	4.1 ± 0.5	5.6 ± 0.4
TXNIP	FLJ59613	A2	0.0 ± 0.0	0.8 ± 0.5	3.2 ± 0.7	5.9 ± 0.1	3.5 ± 0.8	5.2 ± 0.3
ASRGL1	NM_025080.2 BC064963.1	N-A3_006_01	0.0 ± 0.2 0.0 + 0.1	0.5 ± 0.2	1.4 ± 0.5 1.8 ± 0.7	3.2 ± 0.2 3.5 ± 0.4	-0.5 ± 0.1	-0.3 ± 0.4
CYP2S1	NM 030622.6	N-A2_010_01	0.0 ± 0.1 0.0 + 0.3	1.2 ± 0.2	0.2 ± 0.7	-2.9 ± 0.4	-5.8 + 1.1	-4.9 ± 0.4
CYP2S1	FLJ52866	N-A2_010_02	0.0 ± 0.2	1.0 ± 0.2	-0.1 ± 0.1	-3.1 ± 0.5	-5.7 ± 0.7	-5.2 ± 0.7
CYP26B1	NM_019885.2	N-A2_017_01	0.0 ± 1.0	$\textbf{-0.5}\pm0.8$	0.9 ± 0.5	7.5 ± 0.2	5.7 ± 0.8	9.5 ± 0.5
CYP26B1	FLJ51622	N-A2_017_02	0.0 ± 1.3	-0.5 ± 1.4	0.6 ± 0.5	7.0 ± 0.8	4.9 ± 0.0	8.7 ± 0.3
DNMT3B	NM_006892.3	B2	0.0 ± 0.7	0.3 ± 0.1	-1.4 ± 0.2	-6.8 ± 0.2	-11.4 ± 1.6	-10.5 ± 0.2
DNM13B GSTO2	NM_1/5849.1 NM_183230.1	B4 N-A3 017 01	0.0 ± 0.7	1.0 ± 0.4	-0.4 ± 0.3	-3.2 ± 0.2	-4.9 ± 0.1	-3.5 ± 0.7
GST02	FLJ52232	N-A3_017_01	0.0 ± 0.0 0.0 + 0.0	-2.0 ± 0.2 -1.9 ± 0.1	-1.2 ± 0.3	-0.7 ± 0.2 -1.5 ± 0.2	-2.9 ± 1.2 -2.9 ± 1.4	-0.9 ± 0.4 -2.3 ± 1.1
HOXA1	NM_005522.3	N-A2-3_003_04	0.0 ± 0.9	15.0 ± 0.1	14.3 ± 0.3	14.5 ± 1.1	11.1 ± 0.1	12.7 ± 0.8
HOXA1	NM_153620.1	N-A2-3_003_02	0.0 ± 1.9	13.8 ± 0.1	14.1 ± 0.2	13.5 ± 0.7	9.8 ± 0.3	10.5 ± 0.1
ISYNA1	NM_016368.3	N-A3_024_01	0.0 ± 0.0	1.0 ± 0.6	1.4 ± 0.2	2.9 ± 0.0	1.8 ± 0.4	2.2 ± 0.3
ISYNA1	FLJ34860	N-A3_024_05	0.0 ± 0.0	1.2 ± 0.7	1.5 ± 0.2	3.2 ± 0.1	2.0 ± 0.3	2.5 ± 0.6
	FLJ50142 NM 006681 1	N-A3_024_03	0.0 ± 1.2 0.0 + 0.1	0.4 ± 0.7 17+02	0.5 ± 0.1 2 3 + 0 3	1.0 ± 0.2 2 7 + 0 3	0.2 ± 0.3 2 3 + 0 4	-0.2 ± 1.0 1 3 + 0 0
NMU	ENST00000381315	N-A3 025 02	0.0 ± 0.1 0.0 ± 0.1	2.7 ± 0.3	3.5 ± 0.0	3.2 ± 0.3	2.9 ± 0.2	1.6 ± 0.3
PKNOX2	NM_022062.1	N-A3_020_04	0.0 ± 0.2	1.0 ± 0.1	1.9 ± 0.2	2.8 ± 0.1	2.4 ± 0.1	2.1 ± 0.7
PKNOX2	FLJ58605	N-A3_020_05	0.0 ± 0.2	1.1 ± 0.0	1.9 ± 0.2	2.8 ± 0.1	2.0 ± 0.2	1.9 ± 0.9
RFX2	NM_000635.2	NT-PS_07_01	0.0 ± 0.5	-0.2 ± 0.4	1.2 ± 0.1	3.4 ± 0.3	7.2 ± 0.7	8.4 ± 0.8
RFX2	FLJ53376	NT-PS_07_02	0.0 ± 0.5	-0.4 ± 0.5	1.3 ± 0.1	3.7 ± 0.1	7.0 ± 0.8	8.2 ± 0.8
KNF207	INM_1/3/95.2 EL 15/500	N-A3_018_01	0.0 ± 2.5 0.0 ± 0.0	1.4 ± 0.3 2.1 ± 0.0	0.8 ± 0.4 2.1 ± 0.0	2.9 ± 0.1	2.0 ± 0.4	1.5 ± 0.7
SPP1	FLJ54682	D5	0.0 ± 0.0 0.0 + 0.1	2.1 ± 0.0 0.4 ± 0.0	-0.5 + 0.5	-0.5 ± 0.1	-4.3 ± 0.9	-4.3 ± 0.3
SPP1	FLJ52507	D6	0.0 ± 0.1	0.3 ± 0.0	0.0 ± 0.6	-0.1 ± 0.5	-3.5 ± 1.9	-4.3 ± 0.0
SPP1	FLJ78337	D7	0.0 ± 0.5	0.4 ± 0.3	-0.3 ± 0.6	-0.4 ± 0.5	-4.2 ± 1.5	-4.7 ± 0.2
SPP1	NM_000582.2	D8	0.0 ± 1.2	-0.3 ± 0.0	-0.5 ± 0.6	-1.0 ± 1.1	-4.1 ± 1.0	-5.3 ± 0.3
ATG9B	NM_173681.3	CE-07_01	0.0 ± 0.5	1.1 ± 0.3	3.2 ± 0.3	0.6 ± 0.9	0.4 ± 0.0	-0.6 ± 0.1
ATG9B	FLJ39415	CE-07_02	0.0 ± 0.7	0.6 ± 0.4	2.2 ± 0.2	-0.2 ± 0.3	0.1 ± 0.0	-0.7 ± 0.2
CDH6	BC000019 2	CE-14_01 CE-14_02	0.0 ± 0.4 0.0 + 0.2	0.5 ± 0.4 0.1 + 0.3	-1.3 ± 0.3 -0.2 + 0.2	3.0 ± 0.0 2 5 + 0 1	3.3 ± 0.0 2 0 + 0 1	2.9 ± 0.0 0.9 + 0.1
CDII0	5000017.2	CL 17_02	0.0 ± 0.2	0.1 ± 0.3	-0.2 ± 0.2	$\omega.J \pm 0.1$	2.0 ± 0.1	0.7 ± 0.1

CKMT1B	NM_020990.3	CE-17_01	0.0 ± 0.3	-0.6 ± 0.2	-0.6 ± 0.3	-2.9 ± 0.1	-1.8 ± 0.0	-0.6 ± 0.0
CKMT1B	FLJ52224	CE-17_02	0.0 ± 1.1	-0.6 ± 0.2	-0.3 ± 0.4	-2.6 ± 0.1	-0.9 ± 0.0	1.0 ± 0.0
CKMT1B	FLJ52454	CE-17 03	0.0 ± 0.9	-0.8 ± 0.2	-0.6 ± 0.3	-2.8 ± 0.0	-1.1 ± 0.1	1.1 ± 0.1
CLIP4	NM 024692.3	CE-16 01	0.0 ± 0.6	-0.4 ± 0.6	0.8 ± 0.4	2.9 ± 0.1	4.6 ± 0.0	5.6 ± 0.1
CLIP4	FLJ55798	CE-16_02	0.0 ± 0.4	-0.3 ± 0.5	1.5 ± 0.4	2.3 ± 0.2	3.6 ± 0.2	4.1 ± 0.0
CTHRC1	NM 138455.2	N-A3 013 01	0.0 ± 0.3	3.1 ± 0.3	5.0 ± 0.2	5.1 ± 0.6	2.8 ± 0.0	1.3 ± 0.2
CTHRC1		N-A3 013 02	0.0 ± 0.7	0.5 ± 0.1	1.7 ± 0.2	1.9 ± 0.2	3.5 ± 0.1	3.4 ± 0.4
DENND5B	NM 144973.2	CE-21 01	0.0 ± 0.2	-0.2 ± 0.3	0.4 ± 0.1	2.1 ± 0.1	2.3 ± 0.0	3.4 ± 0.0
DENND5B	BC020855.1	CE-21 02	0.0 ± 0.2	-0.2 ± 0.2	0.3 ± 0.1	1.4 ± 0.1	1.0 ± 0.0	1.6 ± 0.0
DMKN	NM 033317.2	CE-19 01	0.0 ± 0.3	-0.3 ± 0.2	-1.1 ± 0.3	-0.8 ± 0.0	-2.1 ± 0.0	-2.9 ± 0.1
DMKN	FLJ57785	CE-19 04	0.0 ± 1.0	-0.2 ± 0.2	0.5 ± 0.3	-1.0 ± 0.1	-1.8 ± 0.0	-1.7 ± 0.0
EPB41L5	NM 020909.2	CE-27 01	0.0 ± 0.2	-0.2 ± 0.1	-0.1 ± 0.1	1.8 ± 0.1	0.7 ± 0.0	0.6 ± 0.0
EPB41L5	BC032822.2	CE-27 02	0.0 ± 0.7	-0.5 ± 0.3	-0.2 ± 0.3	0.5 ± 0.1	-0.3 ± 0.0	-0.1 ± 0.0
EVL	NM 016337.2	CE-29 01	0.0 ± 0.3	-0.1 ± 0.2	0.2 ± 0.3	1.1 ± 0.2	1.7 ± 0.1	1.9 ± 0.1
EVL		CE-29 02	0.0 ± 0.1	0.6 ± 0.2	0.7 ± 0.2	2.2 ± 0.2	2.5 ± 0.0	3.3 ± 0.1
FEZ1	NM 005103.3	CE-10 01	0.0 ± 0.1	-0.6 ± 0.2	-0.7 ± 0.3	-2.0 ± 0.1	-1.1 ± 0.1	0.4 ± 0.0
FEZ1	NM 022549.2	CE-10 02	0.0 ± 0.7	0.0 ± 0.4	-0.8 ± 0.3	-1.2 ± 0.1	-2.5 ± 0.0	-1.4 ± 0.0
FNDC5	NM_153756.1	N-A3_023_01	0.0 ± 0.4	3.1 ± 0.1	4.0 ± 0.3	4.0 ± 0.3	5.5 ± 0.0	6.2 ± 0.1
FNDC5	BC062297.1	N-A3_023_04	0.0 ± 0.3	3.0 ± 0.1	4.1 ± 0.5	3.7 ± 0.3	5.4 ± 0.0	5.5 ± 0.0
FST	NM_013409.1	CE-26_01	0.0 ± 0.4	-0.7 ± 0.1	-2.3 ± 0.4	-2.8 ± 0.7	-4.0 ± 0.1	-5.0 ± 0.1
FST	NM_006350.2	CE-26_02	0.0 ± 0.4	-0.1 ± 0.2	-2.6 ± 0.4	-2.7 ± 0.6	-4.7 ± 0.1	-6.1 ± 0.1
HNF1B	NM_000458.1	N-A2-3_002_01	0.0 ± 1.0	6.0 ± 0.2	9.4 ± 0.4	9.2 ± 0.3	8.7 ± 3.1	8.0 ± 2.3
HNF1B	NM_006481.1	N-A2-3_002_02	0.0 ± 2.1	6.3 ± 0.3	9.5 ± 0.3	8.8 ± 0.4	10.8 ± 1.8	10.2 ± 1.1
HOXA2	NM_006735.3	N-A2_011_01	0.0 ± 0.7	12.8 ± 0.5	14.1 ± 0.1	17.3 ± 0.2	16.4 ± 0.1	17.9 ± 0.2
HOXA2	FLJ39423	TC10_N-A2_011_05	0.0 ± 0.3	8.1 ± 0.2	9.2 ± 0.4	11.6 ± 0.2	11.9 ± 0.3	13.6 ± 0.2
ITIH5	NM_030569.3	N-A2-3_001_01	0.0 ± 0.1	3.4 ± 0.1	4.3 ± 0.2	4.7 ± 0.1	5.5 ± 0.0	4.8 ± 0.1
ITIH5	NM_001001851.1	N-A2-3_001_02	0.0 ± 0.3	3.5 ± 0.2	5.1 ± 0.2	4.1 ± 0.2	4.7 ± 0.1	3.9 ± 0.0
LMCD1	NM_014583.2	N-A2_015_04	0.0 ± 0.5	-2.0 ± 0.4	-2.7 ± 0.1	-0.5 ± 0.1	0.1 ± 0.1	-2.3 ± 0.1
LMCD1	FLJ55005	N-A2_015_02	0.0 ± 0.4	-0.9 ± 0.1	-1.3 ± 0.4	0.0 ± 0.1	0.0 ± 0.0	-1.4 ± 0.1
MAPKAPK2	NM_004759.3	CE-30_01	0.0 ± 0.3	2.0 ± 0.1	3.1 ± 0.3	0.5 ± 0.1	0.3 ± 0.0	-1.3 ± 0.0
MAPKAPK2	NM_032960.2	CE-30_02	0.0 ± 0.4	1.4 ± 0.1	1.6 ± 0.3	1.0 ± 0.0	0.8 ± 0.0	-0.2 ± 0.0
MRPS15	NM_031280.2	CE-24_01	0.0 ± 0.1	-0.1 ± 0.0	-0.1 ± 0.2	-0.1 ± 0.1	-0.2 ± 0.0	-1.0 ± 0.1
MRPS15	FLJ56752	CE-24_02	0.0 ± 0.1	0.3 ± 0.2	0.1 ± 0.1	0.7 ± 0.1	0.5 ± 0.0	0.4 ± 0.1
MS4A6A	NM_152852.1	CE-22_01	0.0 ± 0.1	-0.4 ± 1.0	-2.7 ± 1.9	-2.0 ± 1.5	1.1 ± 0.2	4.2 ± 0.1
MS4A6A	NM_022349.2	CE-22_02	0.0 ± 0.7	-0.6 ± 0.7	-1.0 ± 0.2	-1.7 ± 0.7	0.5 ± 1.3	4.8 ± 0.1
MTA3	NM_020744.2	CE-28_01	0.0 ± 0.1	-0.2 ± 0.1	-0.1 ± 0.2	-0.6 ± 0.1	-1.0 ± 0.0	-2.4 ± 0.0
MTA3	FLJ45312	CE-28_04	0.0 ± 0.2	-0.4 ± 0.3	-1.0 ± 0.4	-1.2 ± 0.3	-0.5 ± 0.0	0.7 ± 0.1
NPHP1	NM_000272.2	CE-09_04	0.0 ± 0.2	-0.1 ± 0.3	0.0 ± 0.1	2.4 ± 0.1	3.3 ± 0.0	2.8 ± 0.1
NPHP1	NM_207181.1	CE-09_02	0.0 ± 0.1	0.0 ± 0.2	0.2 ± 0.2	1.1 ± 0.0	0.9 ± 0.0	-0.5 ± 0.1
NRP2	NM_003872.2	N-A3_007_01	0.0 ± 0.2	1.0 ± 0.3	2.9 ± 0.3	3.3 ± 0.5	0.9 ± 0.0	1.6 ± 0.0
NRP2	NM_018534.3	N-A3_007_02	0.0 ± 0.6	2.1 ± 0.3	3.7 ± 0.2	4.2 ± 0.3	1.3 ± 0.1	2.2 ± 0.0
NRP2	NM_201264.1	N-A3_007_03	0.0 ± 0.3	0.6 ± 0.1	1.7 ± 0.2	1.5 ± 0.4	-1.5 ± 0.1	-1.3 ± 0.0
PEG3	NM_006210.1	NT-PS_06_03	0.0 ± 0.5	1.0 ± 0.8	1.0 ± 0.3	3.0 ± 0.3	5.4 ± 0.8	6.5 ± 0.8
PEG3	NM_015363.3	NT-PS_06_04	0.0 ± 0.2	0.2 ± 0.0	0.2 ± 0.2	0.7 ± 0.1	4.3 ± 1.0	4.0 ± 0.8
RBP1	NM_002899.2	N-A2-3_004_01	0.0 ± 0.1	2.0 ± 0.3	2.9 ± 0.2	4.0 ± 0.0	4.9 ± 0.0	5.1 ± 0.0
RBP1	FLJ50903	N-A2-3_004_02	0.0 ± 0.3	2.4 ± 0.3	2.5 ± 0.4	5.2 ± 0.1	5.8 ± 0.1	6.5 ± 0.0
SLC44A5	NM_152697.2	CE-11_01	0.0 ± 0.5	0.1 ± 0.1	0.7 ± 0.1	3.1 ± 0.3	4.5 ± 0.1	5.9 ± 0.0
SLC44A5	FLJ35851	CE-11_02	0.0 ± 0.4	0.3 ± 0.1	0.5 ± 0.1	2.8 ± 0.3	4.3 ± 0.0	5.1 ± 0.1
ST3GAL5	NM_003896.2	CE-08_01	0.0 ± 0.3	0.4 ± 0.3	0.7 ± 0.1	2.5 ± 0.1	2.4 ± 0.0	4.2 ± 0.0
ST3GAL5	FLJ55056	CE-08_02	0.0 ± 0.2	0.8 ± 0.3	1.1 ± 0.2	2.6 ± 0.1	2.0 ± 0.0	3.6 ± 0.0
TES	NM_015641.2	CE-12_01	0.0 ± 0.2	-0.5 ± 0.3	0.0 ± 0.2	2.1 ± 0.0	2.9 ± 0.0	2.5 ± 0.0
TES	FLJ59160	CE-12_02	0.0 ± 0.7	-1.2 ± 0.3	-0.5 ± 0.3	1.7 ± 0.1	3.7 ± 0.0	4.3 ± 0.0
WDR74	NM_018093.1	CE-23_01	0.0 ± 0.2	0.2 ± 0.2	-0.5 ± 0.2	-0.4 ± 0.1	-2.2 ± 0.0	-2.2 ± 0.0
WDR74	FLJ57690	CE-23_02	0.0 ± 0.1	0.0 ± 0.1	-0.2 ± 0.1	0.1 ± 0.1	-0.4 ± 0.0	0.2 ± 0.0
YPEL3	NM_031477.3	CE-20_01	0.0 ± 0.1	0.2 ± 0.3	1.3 ± 0.2	2.3 ± 0.1	2.9 ± 0.0	3.7 ± 0.1
YPEL3	FLJ12347	CE-20_02	0.0 ± 0.8	0.9 ± 0.2	2.2 ± 0.3	2.5 ± 0.0	3.0 ± 0.0	3.6 ± 0.0
ZNF483	NM_133464.1	TC12_02	0.0 ± 0.4	0.0 ± 0.2	-1.1 ± 0.4	-1.6 ± 0.3	-3.4 ± 0.2	-2.3 ± 0.1
ZNF483	FLJ35492	TC12_01	0.0 ± 1.4	-0.9 ± 0.5	0.8 ± 0.5	-1.2 ± 0.2	-5.8 ± 0.6	-4.6 ± 1.1

Supplementary Table 3. Quantitative analysis of genes containing multiple TSSs by real-time PCR $% \mathcal{A}$

Relative expression to 0-day sample (Log2RQ)

			0-day Log2RQ	1-day Log2RQ	2-day Log2RQ	7-day Log2RQ	14-day Log2RQ	35-day Log2RQ
Gene symbol	cDNA name	Primer set Name	mean \pm S.D.	mean \pm S.D.	mean \pm S.D.	mean \pm S.D.	mean \pm S.D.	mean \pm S.D.
AGPS	FLJ51873	027_01	0.0 ± 0.2	0.6 ± 0.5	-2.5 ± 1.2	4.5 ± 0.3	2.8 ± 0.7	3.4 ± 0.5
AGPS	NM_003659.1	027_02	0.0 ± 0.1	-0.1 ± 0.2	0.1 ± 0.0	1.1 ± 0.2	-1.5 ± 0.4	-1.1 ± 0.2
AKT1	FLJ53606	019_01	0.0 ± 0.1	0.5 ± 0.0	-0.6 ± 0.5	4.1 ± 0.1	7.4 ± 0.8	8.7 ± 1.1
AKT1	NM_005163.2	019_02	0.0 ± 0.2	-0.6 ± 0.4	0.1 ± 0.1	1.0 ± 0.1	0.4 ± 0.2	1.2 ± 0.7
ARHGEF3	FLJ55856	032_01	0.0 ± 0.1	-1.1 ± 0.2	-0.2 ± 0.2	-0.8 ± 0.1	-3.5 ± 1.2	-1.3 ± 0.1
ARHGEF3	FLJ55591	032_02	0.0 ± 1.0	1.9 ± 0.3	2.7 ± 0.7	3.1 ± 0.7	0.5 ± 0.1	2.9 ± 0.2
ARHGEF3	NM_019555.1	032_03	0.0 ± 0.5	0.5 ± 0.7	1.4 ± 0.5	2.5 ± 0.6	0.8 ± 1.8	4.0 ± 0.7
CRISPLD1	FLJ57290	034_01	0.0 ± 0.4	0.2 ± 0.2	0.9 ± 0.7	2.7 ± 0.5	2.9 ± 0.6	4.3 ± 0.9
CRISPLD1	NM_031461.3	034_02	0.0 ± 0.3	-0.8 ± 0.5	-0.4 ± 0.6	1.7 ± 0.1	0.3 ± 0.2	1.0 ± 0.5
DYSF	FLJ55344	008_01	0.0 ± 1.3	-3.2 ± 2.7	-2.3 ± 1.0	1.5 ± 4.0	-0.8 ± 2.4	1.4 ± 0.8
DYSF	NM_003494.2	008_02	0.0 ± 0.0	-0.1 ± 0.1	0.3 ± 0.0	1.1 ± 0.5	-3.7 ± 0.8	-8.2 ± 1.8
FAM65B	FLJ56137	026_02	0.0 ± 1.2	1.3 ± 0.5	2.3 ± 0.1	3.9 ± 0.6	1.5 ± 0.5	0.6 ± 0.6
FAM65B	AB002384.1	026_03	0.0 ± 0.7	0.7 ± 0.5	1.5 ± 0.1	3.3 ± 0.0	2.1 ± 0.8	4.0 ± 0.3
FAM65B	NM_015864.2	026_04	0.0 ± 0.9	-1.8 ± 1.1	0.2 ± 0.5	-2.0 ± 0.6	-3.6 ± 0.9	-2.0 ± 0.7
FGD4	FLJ56188	040_01	0.0 ± 1.4	0.8 ± 1.3	2.5 ± 1.0	5.0 ± 0.7	2.6 ± 2.4	5.7 ± 0.5
FGD4	FLJ55905	040_02	0.0 ± 0.2	-1.5 ± 0.9	-1.3 ± 0.1	-1.5 ± 0.9	-3.3 ± 0.2	-2.9 ± 0.3
FGD4	NM_139241.1	040_03	0.0 ± 0.2	0.2 ± 0.4	0.9 ± 0.1	2.5 ± 0.6	0.2 ± 0.2	1.5 ± 0.3
HDAC9	FLJ55607	065_01	0.0 ± 0.8	-2.2 ± 0.8	-2.1 ± 0.4	-0.3 ± 0.1	-2.0 ± 0.6	0.4 ± 1.0
HDAC9	FLJ34377 NIM 178422-1	065_02	0.0 ± 1.7	-1.1 ± 0.1	-0.5 ± 0.1	0.1 ± 0.5	-5.0 ± 0.1	-0.0 ± 1.0
HDAC9	NWI_1/8425.1	063_03	0.0 ± 0.0	-1.8 ± 0.1	-0.7 ± 0.2	-0.8 ± 0.3	-3.9 ± 0.3	-1.5 ± 0.4
MAGI2 MAGI2	FLJ99033	060_01	0.0 ± 2.2	1.5 ± 0.0	1.1 ± 0.4 1.3 ± 0.1	1.4 ± 0.4	0.4 ± 0.3	4.1 ± 0.0 3.2 ± 1.2
MAGI2 MAGI2	NM 012301.3	060_02	0.0 ± 0.0	0.5 ± 0.1	1.3 ± 0.1	0.9 ± 0.2	0.3 ± 0.0	3.2 ± 1.2 3.6 ± 0.0
MADIZ MAP7	FL 156145	066_01	0.0 ± 0.0	-0.0 ± 0.9	0.3 ± 0.7 2 3 + 1 9	3.7 ± 0.2 10.4 + 0.4	2.7 ± 0.2 8.0 ± 0.6	3.0 ± 0.9 7 8 ± 0.4
MAP7	FL 150558	066_02	0.0 ± 1.4	0.0 ± 2.4 0.4 + 1.2	2.3 ± 1.9 3.1 ± 0.9	34 ± 10	-0.2 ± 1.8	7.3 ± 0.4 5.2 ± 0.1
MAP7	FL150557	066_03	0.0 ± 0.0	0.4 ± 1.2 0.4 + 0.7	3.1 ± 0.9 27 + 07	3.4 ± 1.0 3.0 ± 0.7	15+12	3.2 ± 0.1 4.4 ± 0.7
MAP7	FL178961	066_04	0.0 ± 0.2 0.0 + 1.2	0.7 ± 0.7	2.7 ± 0.7 2.9 + 0.1	3.0 ± 0.7 3.7 ± 1.4	-0.2 ± 1.2	4.4 ± 0.7 4.6 ± 0.1
MAP7	NM 0039803	066_05	0.0 ± 1.2 0.0 + 0.1	-0.9 ± 0.7	0.3 ± 0.1	2.4 ± 0.2	0.2 ± 1.1 0.6 + 0.5	2.1 ± 0.6
MCF2	FLJ51685	084 01	0.0 ± 0.1	-1.3 ± 0.3	-1.1 ± 0.7	1.1 ± 0.2	0.0 ± 0.2	-1.2 ± 0.4
MCF2	NM 005369.2	084 02	0.0 ± 0.1	-2.3 ± 0.0	-3.5 ± 0.6	0.6 ± 0.1	-1.5 ± 0.3	-0.8 ± 1.9
NCAM2	FLJ54289	073 01	0.0 ± 0.5	-0.5 ± 0.2	0.3 ± 0.0	2.1 ± 0.2	1.3 ± 0.1	3.5 ± 0.3
NCAM2	FLJ53114	073 02	0.0 ± 0.8	-0.6 ± 1.6	1.0 ± 0.9	2.3 ± 0.2	1.0 ± 0.5	3.5 ± 1.2
NCAM2	NM_004540.2	073_03	0.0 ± 0.9	-0.3 ± 0.1	0.2 ± 0.1	2.4 ± 0.0	0.3 ± 1.5	2.0 ± 0.7
NEDD4L	FLJ53199	006_01	0.0 ± 0.9	0.9 ± 0.3	1.4 ± 0.5	3.5 ± 0.3	-0.8 ± 0.7	-3.5 ± 1.8
NEDD4L	FLJ61249	006_02	0.0 ± 0.8	0.0 ± 0.9	0.3 ± 0.1	1.2 ± 0.1	-0.1 ± 0.4	1.7 ± 1.1
NEDD4L	NM_015277.2	006_03	0.0 ± 0.1	-0.5 ± 0.2	0.4 ± 0.1	1.2 ± 0.1	-1.2 ± 0.3	0.6 ± 0.4
OXR1	FLJ42450	090_01	0.0 ± 0.1	0.0 ± 0.8	0.7 ± 0.7	4.7 ± 0.2	1.1 ± 1.0	2.4 ± 0.1
OXR1	NM_181354.3	090_04	0.0 ± 0.7	-0.4 ± 0.2	0.7 ± 0.1	1.2 ± 0.3	-1.6 ± 0.5	-2.2 ± 0.7
OXR1	FLJ55036	090_05	0.0 ± 0.2	-0.9 ± 0.6	0.0 ± 0.0	2.3 ± 0.3	0.3 ± 0.2	2.0 ± 0.6
PEX5L	FLJ50526	077_01	0.0 ± 0.5	-0.9 ± 0.5	0.1 ± 0.7	0.0 ± 0.1	-1.5 ± 0.9	0.1 ± 0.3
PEX5L	FLJ53911	077_02	0.0 ± 0.7	-2.6 ± 0.5	-3.5 ± 1.9	-3.0 ± 0.3	-4.2 ± 1.1	-0.7 ± 1.7
PEX5L	FLJ50489	077_03	0.0 ± 2.0	-1.9 ± 0.5	-3.4 ± 1.0	-2.7 ± 1.1	-5.3 ± 1.3	-3.1 ± 3.3
PEX5L	NM_016559.1	077_04	0.0 ± 0.8	-2.9 ± 0.1	-4.5 ± 0.3	-3.7 ± 0.5	-5.1 ± 0.5	-2.2 ± 1.1
PPP2R2C	FLJ58008	033_01	0.0 ± 1.1	-3.0 ± 0.1	-1.7 ± 0.7	-3.0 ± 0.4	-4.3 ± 0.9	-1.4 ± 1.6
PPP2R2C	NM_020416.2	033_02	0.0 ± 0.1	-0.4 ± 0.3	-0.6 ± 0.0	-2.4 ± 0.1	-1.9 ± 1.1	1.9 ± 1.4
RAPGEF4	FLJ30930	010_02	0.0 ± 0.6	0.5 ± 0.6	0.4 ± 1.1	2.8 ± 0.0	2.3 ± 0.4	2.5 ± 0.9
RAPUEF4	FLJ38308	010_04	0.0 ± 1.0	1.9 ± 0.8	3.0 ± 1.3	9.8 ± 0.1	1.2 ± 0.3	10.0 ± 0.8
RAFUEF4	NM 007022 1	010_03	0.0 ± 1.3 0.0 ± 0.0	4.2 ± 0.1	4.0 ± 0.3	0.4 ± 0.1	3.2 ± 0.2 0.1 ± 0.9	4.3 ± 0.4 0.8 ± 0.2
SFMA5R	FL 155460	039_01	0.0 ± 0.0	-1.2 ± 0.0	-1.3 ± 0.3	0.0 ± 0.1	0.1 ± 0.8 0.7 + 1.5	0.0 ± 0.2 17+04
SEMA5R	FLI34162	039_02	0.0 ± 0.7 0.0 + 0.0	-0.3 ± 0.2 0 3 + 0 3	-0.4 ± 0.1 0.6 + 0.3	-1.0 ± 0.3 2 0 + 0 2	41+13	1.7 ± 0.4 5 5 + 0 4
SEMA5B	AB040878 1	039_03	0.0 ± 0.0 0.0 + 0.7	-0.2 ± 0.3	-0.1 ± 0.3	-13 + 04	0.3 ± 0.8	14+04
SEMA5B	NM 018987 1	039_04	0.0 ± 0.7 0.0 ± 0.9	0.2 ± 0.0 0.0 + 0.4	-0.1 ± 0.2	-2.0 ± 1.3	-1.8 ± 0.0	1.4 ± 0.4 1 8 + 0 2
SH3KBP1	FLJ54612	025_01	0.0 ± 0.9	0.6 ± 0.4	0.4 + 0.4	0.3 + 0.9	-4.5 ± 0.0	-5.5 + 1.9
SH3KBP1	FLJ54623	025_02	0.0 ± 0.1	10 ± 14	-1.5 + 2.2	2.6 ± 0.9	11 + 2.0	44 ± 01
SH3KBP1	NM 031892.1	025 03	0.0 ± 0.0	-0.9 + 0.4	0.0 ± 0.1	0.7 ± 0.0	-1.6 ± 0.4	-1.1 + 0.7
SPRED2	FLJ52731	031 01	0.0 ± 0.0	0.1 ± 0.4	0.0 ± 0.1	1.8 ± 0.4	1.2 ± 1.1	6.5 + 1.2
SPRED2	NM 181784.1	031 02	0.0 ± 0.9	1.1 ± 0.2	1.3 ± 0.6	0.4 ± 0.2	-1.4 ± 0.4	-0.4 ± 1.0
TFEC	FLJ55256	047_01	0.0 ± 0.8	2.2 ± 1.5	4.3 ± 0.4	10.8 ± 0.2	9.4 ± 0.1	6.0 ± 0.3
TFEC	NM_012252.2	047_02	0.0 ± 2.6	-0.3 ± 0.5	-1.4 ± 0.9	2.6 ± 0.3	5.0 ± 8.2	-5.6 ± 1.4
TMC5	FLJ54454	042_01	0.0 ± 0.2	-1.4 ± 0.3	-1.2 ± 0.4	-0.8 ± 0.4	-2.6 ± 0.2	0.5 ± 0.4
TMC5	FLJ54906	042_02	0.0 ± 0.4	-2.5 ± 0.6	-1.0 ± 0.9	-3.8 ± 0.0	-6.7 ± 2.7	-7.3 ± 0.8
TMC5	NM_024780.3	042_03	0.0 ± 0.1	-1.2 ± 0.4	-1.4 ± 0.5	-1.9 ± 0.6	-2.1 ± 1.1	0.5 ± 0.7
AMPD3	FLJ51124	064_01	0.0 ± 0.5	-1.1 ± 0.4	-0.7 ± 0.1	0.5 ± 0.1	-0.1 ± 0.7	-0.3 ± 0.2
AMPD3	NM_000480.2	064_02	0.0 ± 1.4	-0.5 ± 0.1	-0.1 ± 0.3	1.6 ± 0.5	0.0 ± 0.1	1.3 ± 0.5
AOAH	NM_001637.1	002_02	0.0 ± 0.8	-1.1 ± 0.0	0.1 ± 0.7	-1.6 ± 0.9	-1.9 ± 0.9	2.4 ± 1.2
AOAH	FLJ51934	002_03	0.0 ± 0.3	-0.9 ± 0.4	-0.9 ± 0.5	0.4 ± 0.7	-2.1 ± 1.3	1.8 ± 1.1
APLP1	FLJ56046	007_01	0.0 ± 2.1	-1.3 ± 0.3	-0.1 ± 0.1	0.6 ± 0.4	1.7 ± 0.3	2.9 ± 0.4

A DI D1	NDA 005166.2	007 02	0.0 . 1.5	10.10	0.2 . 0.0	16.00	17.06	2.2 + 1.4
APLPI	NM_005166.5	007_03	0.0 ± 1.5	-1.0 ± 1.2	0.2 ± 0.9	1.6 ± 0.8	1./±0.6	3.3 ± 1.4
BACEI	FLJ54690	054_01	0.0 ± 0.8	-0.6 ± 0.3	1.0 ± 0.4	1.2 ± 0.3	-0.1 ± 0.7	1.3 ± 1.0
BACE1	NM_012104.3	054_02	0.0 ± 1.7	-0.5 ± 0.5	1.2 ± 0.1	1.6 ± 0.5	-0.5 ± 0.9	0.8 ± 0.4
CACNB3	FLJ58411	041_01	0.0 ± 0.3	-0.7 ± 0.4	-0.6 ± 0.0	-1.5 ± 0.0	-3.3 ± 0.3	-2.1 ± 0.4
CACNB3	FLJ57401	041_02	0.0 ± 0.6	-0.1 ± 0.2	-1.8 ± 0.1	1.1 ± 0.0	0.3 ± 0.4	1.5 ± 0.8
CACNB3	NM_000725.2	041_03	0.0 ± 0.3	-0.9 ± 0.5	0.2 ± 0.4	1.0 ± 0.1	-0.2 ± 0.2	1.2 ± 0.5
CHRNB1	FLJ52354	005_01	0.0 ± 0.1	-1.5 ± 0.4	0.5 ± 0.2	0.0 ± 0.3	-1.4 ± 0.4	-2.7 ± 0.1
CHRNB1	NM_000747.2	005_02	0.0 ± 0.8	-0.9 ± 0.2	0.1 ± 0.1	0.7 ± 0.2	0.3 ± 0.6	1.3 ± 0.8
CLTCL1	FLJ56961	021_01	0.0 ± 1.5	-0.5 ± 0.0	-0.2 ± 0.4	-0.8 ± 0.2	-2.0 ± 0.2	-0.7 ± 1.8
CLTCL1	NM_001835.1	021_02	0.0 ± 1.6	-0.3 ± 0.1	0.3 ± 0.2	0.4 ± 0.0	-1.2 ± 0.5	-0.3 ± 1.2
CUL2	NM 003591.2	036 02	0.0 ± 1.8	-0.4 ± 1.0	0.4 ± 1.2	1.8 ± 1.7	-0.6 ± 0.6	0.6 ± 0.2
CUL2	FLJ37898	036_03	0.0 ± 0.1	-0.3 ± 0.0	-0.6 ± 0.5	0.4 + 0.4	-2.0 ± 0.2	-2.0 ± 1.0
DLGAP1	FLJ56525	043_01	0.0 ± 0.5	-0.4 + 0.4	0.2 ± 0.1	-0.6 + 0.2	-1.1 ± 0.3	-1.1 + 1.0
DLGAP1	NM 004746.2	043 02	0.0 ± 0.5	-0.7 ± 0.2	0.6 ± 0.1	-0.2 + 0.2	-1.1 ± 0.6	-1.0 ± 1.0
DLGAP1	FLJ54734	043_04	0.0 ± 1.6	-1.5 ± 0.9	-1.1 ± 0.3	1.0 + 1.4	1.3 + 3.4	1.0 ± 0.3
DLGAP1	NM_001003809.1	043_05	0.0 ± 0.4	-0.5 ± 0.1	0.4 ± 0.2	11 + 07	-0.4 + 1.1	-0.1 ± 0.8
EML2	FLJ56452	030_01	0.0 ± 0.1	-1.0 + 1.1	0.1 ± 0.2	0.8 + 1.1	-0.2 + 1.0	1.5 + 1.5
EML2	NM 012155.1	030 02	0.0 ± 0.2	-2.0 ± 0.5	0.6 ± 0.3	-1.3 ± 0.1	-2.5 ± 0.9	-1.1 ± 0.7
EXOC4	FLJ54541	014 01	0.0 ± 0.6	0.1 ± 0.0	0.6 ± 0.3	1.3 ± 0.1	0.6 ± 0.0	1.9 ± 0.3
EXOC4	FLJ38176	014 02	0.0 ± 0.5	0.1 ± 0.0	0.6 ± 0.4	1.4 ± 0.3	0.5 ± 0.1	1.9 ± 0.3
EXOC4	FLJ53330	014 03	0.0 ± 0.0	-0.5 ± 0.3	-0.1 ± 0.5	0.4 ± 0.2	-1.7 ± 0.5	-0.9 ± 0.6
EXOC4	NM 021807.2	014 04	0.0 ± 0.0	-0.9 ± 0.3	0.0 ± 0.0	1.0 ± 0.2	-1.4 ± 0.6	-0.3 ± 0.2
FGF13	FLJ57884	003_01	0.0 ± 0.4	1.5 ± 0.3	0.7 ± 0.3	1.3 ± 0.2	-0.1 ± 0.5	0.4 + 1.6
FGF13	FLJ57068	003 02	0.0 ± 0.6	0.2 ± 0.3	0.5 ± 0.2	1.0 ± 0.4	-1.2 ± 0.6	-0.2 ± 1.3
FGF13	NM 033642.1	003_03	0.0 ± 0.0	0.2 ± 0.9 0.8 ± 0.9	0.2 ± 0.2	0.9 ± 0.4	-1.3 ± 0.2	-0.8 ± 1.2
FGF13	NM_004114.2	003_04	0.0 ± 0.3	0.9 ± 0.8	0.2 ± 0.5 0.3 ± 0.5	0.9 ± 0.3	-1.2 ± 0.0	-0.8 ± 0.9
GNE	NM_005476.3	062_03	0.0 ± 0.3	-1.1 ± 0.4	0.3 ± 0.0	0.1 ± 0.2	-0.9 ± 0.2	-1.4 ± 0.5
GNE	FL 151/79	062_03	0.0 ± 0.2	-2.2 ± 0.0	-0.4 ± 0.0	-0.7 ± 0.2	-1.6 ± 0.2	-2.5 ± 1.0
HDAC4	FL 151177	044_02	0.0 ± 0.1	-2.2 ± 0.0	0.4 ± 0.2	0.7 ± 0.0	0.6 ± 0.7	1.7 ± 0.7
HDAC4	FL 151174	044_02	0.0 ± 0.4	-0.4 ± 0.1	0.1 ± 0.5	0.0 ± 0.1	0.0 ± 0.3	1.7 ± 0.7 1.0 ± 0.3
HDAC4	NM 006037.2	044_03	0.0 ± 0.3	-0.3 ± 0.0	0.4 ± 0.9	0.0 ± 0.4	0.0 ± 0.2	1.0 ± 0.3 1.1 ± 0.7
I SAMP	FL 154658	022_01	0.0 ± 0.4	-0.4 ± 0.0	0.1 ± 0.0 0.7 ± 0.9	1.1 ± 0.3	-0.3 ± 0.4	1.1 ± 0.7 2.5 ± 0.2
LSAMP	NM 002338.2	022_01	0.0 ± 1.1 0.0 ± 0.8	-1.1 ± 1.2	-0.3 ± 0.2	-1.0 ± 1.0	-0.5 ± 0.4	-0.4 ± 0.8
NHEDC2	FL 15/1331	022_02	0.0 ± 0.0	-1.1 ± 0.3	-0.3 ± 0.2	-1.0 ± 1.0 1.4 ± 0.4	-1.1 ± 0.0 1.1 + 0.4	-0.4 ± 0.0
NHEDC2	NM 178833.3	069_01	0.0 ± 0.3	0.0 ± 0.4	-0.1 ± 0.4	1.4 ± 0.4	1.1 ± 0.4	2.0 ± 0.0
NOV4	EL 151027	009_02	0.0 ± 0.1	-0.9 ± 0.4	-0.3 ± 0.4	0.1 ± 0.0	-1.4 ± 0.2	-0.2 ± 1.0
NOX4	FL 151025	055_01	0.0 ± 1.2	0.1 ± 0.1 1.3 ± 0.1	-2.4 ± 0.0	0.5 ± 0.2	0.1 ± 0.7 2.0 ± 0.8	1.1 ± 1.3 0.0 ± 1.2
NOX4	NM 016031.2	055_02	0.0 ± 0.0	1.3 ± 0.1	-0.7 ± 1.0	2.3 ± 0.3	2.0 ± 0.0	0.9 ± 1.2
DI D5	EL 157051	035_03	0.0 ± 1.9	-0.3 ± 0.3	0.1 ± 0.5	0.3 ± 0.2	-2.5 ± 0.9	0.0 ± 1.0
DI D5	NM 152666 1	035_01	0.0 ± 0.4	-0.7 ± 0.9	-0.3 ± 0.0	2.3 ± 0.9	0.0 ± 2.0	1.9 ± 0.4
FLDJ DTDN2	NM_152000.1	055_02	0.0 ± 0.2	-0.7 ± 0.0	-0.3 ± 0.1	0.2 ± 0.1	0.1 ± 3.0	-0.9 ± 0.3
TTDN2	EL 150545	061_03	0.0 ± 0.4	-2.4 ± 0.1	-1.0 ± 0.2	0.2 ± 0.3	-1.3 ± 0.2	-1.4 ± 0.1
DTDDD	FLJ50545	001_04	0.0 ± 0.4	-2.2 ± 0.2	0.2 ± 0.4	-0.9 ± 0.3	-1.7 ± 0.9	-2.3 ± 0.2
DTDDD	NM 002840.2	016_02	0.0 ± 1.0	-1.3 ± 1.1	-0.3 ± 2.0	1.0 ± 0.2	1.0 ± 0.0	3.3 ± 1.8
RARG	FI 154463	010_03	0.0 ± 0.1 0.0 + 0.2	-1.4 ± 0.3 13 ± 0.3	-0.7 ± 0.3	1.2 ± 0.2	-0.3 ± 0.0	2.0 ± 0.9
PARG	FL 154482	087_01	0.0 ± 0.3	1.3 ± 0.3 1.0 ± 0.0	2.0 ± 0.3	-0.0 ± 0.4	-1.9 ± 0.8	-1.0 ± 0.4
DADC	FLJJ4462	087_02	0.0 ± 0.4	1.0 ± 0.0	1.0 ± 0.2	-1.1 ± 0.3	-1.7 ± 0.3	-1.0 ± 0.2
DIMCI	EL 152428	087_03	0.0 ± 0.3	-0.9 ± 0.3	0.4 ± 0.3	-2.4 ± 0.4	-3.1 ± 0.8	-1.0 ± 1.0
RINSI DIME1	FLJ52458	028_01	0.0 ± 0.3	-0.0 ± 0.3	-1.0 ± 0.4	0.8 ± 0.3	-0.4 ± 0.2	2.9 ± 1.3
DIMS1	FLJ33378	028_02	0.0 ± 0.4	-1.0 ± 0.0	-1.4 ± 1.1	0.3 ± 0.2	0.0 ± 0.0	2.1 ± 1.2
SI C26A4	EI 150/8/	020_03	0.0 ± 1.4	-2.0 ± 0.1	-1.1 ± 0.7	0.9 ± 0.2	-0.9 ± 0.0	2.0 ± 0.7
SLC20A4	FI 150684	013_01	0.0 ± 1.0 0.0 ± 0.7	-0.0 ± 0.2	0.4 ± 0.0	0.7 ± 0.8 17 ± 15	-0.0 ± 0.0	-0.1 ± 0.0 15 ± 3.1
SLC20A4	NM 000441 1	013_02	0.0 ± 0.7	-1.0 ± 0.3	-1.0 ± 1.9 0.7 ± 0.4	-1.7 ± 1.3	-5.1 ± 2.3 14 ± 0.7	-1.5 ± 3.1
SLC20A4	FI 155865	015_04	0.0 ± 0.0	-1.0 ± 0.0	-0.7 ± 0.4	-0.1 ± 0.2	-1.4 ± 0.7	-0.4 ± 0.1
SLC43A2	NM 152346.1	037_02	0.0 ± 0.9 0.0 ± 0.7	-1.2 ± 0.3	-0.7 ± 1.0	2.0 ± 0.3 0.2 ± 0.2	0.0 ± 1.2 0.0 ± 0.4	0.5 ± 0.4 1 2 \pm 1 2
SLC43A2	FI 155281	0.57_02	0.0 ± 0.7 0.0 ± 0.1	-0.7 ± 0.2	-0.4 ± 0.1	0.2 ± 0.2 0.7 ± 0.5	0.0 ± 0.4	1.2 ± 1.2 2.4 ± 1.6
SLC5A1	NM 0002421	011_01	0.0 ± 0.1	-1.0 ± 0.2	-0.0 ± 0.0	0.7 ± 0.3	-1.0 ± 2.3	2.4 ± 1.0
SLUJAI	11111_000343.1	011_02	0.0 ± 0.4	-0.2 ± 0.3	0.2 ± 0.0	1.1 ± 0.4	0.7 ± 0.0	0.0 ± 0.0

Gene symbo	ol cDNA name	Expression pattern	Gene description	References
AMPD3	FLJ51124 NM 000480.2	Same	adenosine monophosphate deaminase (isoform F)	[S1]
AOAH	NM_001637.1 FLJ51934	Same	acyloxyacyl hydrolase (neutrophil)	[S2]
APLP1	FLJ56046 NM 005166.3	Same	amyloid beta (A4) precursor-like protein 1	[S3, S4]
BACE1	FLJ54690 NM 012104.3	Same	beta-site APP-cleaving enzyme 1	[10, S5, S6]
CACNB3	FLJ58411 FLJ57401 NM 000725.2	Same	calcium channel, voltage-dependent, beta 3 subunit	[10, S7, S8]
CHRNB1	FLJ52354 NM_000747.2	Same	cholinergic receptor, nicotinic, beta 1 (muscle)	[S9]
CLTCL1	FLJ56961 NM_001835.1	Same	clathrin, heavy polypeptide-like 1	[S10]
CUL2	NM_003591.2 FLJ37898	Same	cullin 2	[S11, S12]
DLGAP1	FLJ56525 NM_004746.2 FLJ54734 NM 001003809.1	Same	discs, large (Drosophila) homolog- associated protein 1	[\$13]
EML2	FLJ56452 NM 012155.1	Same	echinoderm microtubule associated	[S14]
EXOC4	FLJ54541 FLJ38176 FLJ53330	Same	exocyst complex component 4	[\$15]
FGF13	FLJ57884 FLJ57068 NM_033642.1 NM_004114.2	Same	fibroblast growth factor 13	[10, S16, S17]
GNE	NM_005476.3 FLJ51479	Same	glucosamine (UDP-N-acetyl)-2- epimerase/N-acetylmannosamine kinase	[S18]
HDAC4	FLJ51177 FLJ51174 NM 006037.2	Same	histone deacetylase 4	[S19, S20]
LSAMP	FLJ54658 NM 002338.2	Same	limbic system-associated membrane	[S21, S22]
NHEDC2	FLJ54331 NM 178833.3	Same	Na+/H+ exchanger domain containing 2	[S23]
NOX4	FLJ51027 FLJ51025 NM 016931.2	Same	NADPH oxidase 4	[\$24]
PLD5	FLJ57051 NM_152666.1	Same	phospholipase D family, member 5	[10]
PTPN3	NM_002829.2 FLJ50545	Same	protein tyrosine phosphatase, non- receptor type 3	[\$25]
PTPRR	FLJ55167 NM_002849.2	Same	protein tyrosine phosphatase, receptor type, R	[S26, S27]
RARG	FLJ54463 FLJ54482 NM_000966.3	Same	retinoic acid receptor, gamma	[S28, S29]
RIMS1	FLJ52438 FLJ53578 NM_014989.2	Same	regulating synaptic membrane exocytosis 1	[\$30]
SLC26A4	FLJ50484 FLJ50684 NM_000441_1	Same	solute carrier family 26, member 4	[\$31]
SLC43A2	FLJ55865 NM 152346 1	Same	solute carrier family 43, member 2	[\$32]
SLC5A1	FLJ55281 NM_000343.1	Same	solute carrier family 5 (sodium/glucose cotransporter), member 1	[\$33, \$34]

Supplementary Table 4. Quantitative evaluation of 25 genes including multiple TSSs by real-time PCR.

 \ast 25 genes were selected as tissue specific expression and multiple protein coding. But these genes were not RA responsive gene.

Functional category (GO : M	Number of matched genes					
	-	Selected genes	RefSeq			
		(156 genes)	%	(24,210 cDNAs)	%	
Binding	Nucleic acid binding	10	(9.3)	706	(8.9)	
	Nucleotide binding	12	(11.2)	1,047	(13.2)	
	Ion binding	4	(3.7)	245	(3.1)	
	Protein binding	9	(8.4)	450	(5.7)	
	Other bindings	2	(1.9)	304	(3.8)	
Catalytic activity	Transferase activity	8	(7.5)	808	(10.2)	
	Hydrolase activity	8	(7.5)	902	(11.3)	
	Ligase activity	4	(3.7)	107	(1.3)	
	Other catalytic activity	9	(8.4)	653	(8.2)	
Transcription regulator		5	(4.7)	364	(4.6)	
Signal transducer activity		11	(10.3)	879	(11.0)	
Transporter activity		11	(10.3)	997	(12.5)	
Structural molecule activity		1	(0.9)	163	(2.0)	
Enzyme regulator activity		10	(9.3)	142	(1.8)	
Others		3	(2.8)	193	(2.4)	
Total		107		7,960		

Supplementary Table 5.. GO functional classification of selected 156 genes containing multiple TSSs by real-time PCR.

Total refers to the number of cDNAs used for the classification of molecular function.

We categorized each cDNA used for identifying the genomic regions of selected 156 genes.

Results obtained using the cDNAs transcribed from the same genomic region were merged.

We categorized 24,210 human RefSeq and identified 20,072 protein-coding genes.

Results obtained using the human RefSeq transcribed from the same genomic region were also merged.

If an encoded protein was predicted to belong to two or more categories, it was counted every time.